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INSTABILITY OF FLOW IN A STREAMWISE CORNER

Manhar R. Dhanak 1

Department of Ocean Engineering

Florida Atlantic University

Boca Raton, FL 33431

ABSTRACT

The linear stability of an incompressible laminar flow in tile blending boundary layer

between the boundary layer in a 90 ° streamwise corner and a Blasius boundary layer well

away from the corner is examined using a locally parallel flow approximation. It is shown

that the influence of the outer boundary conditions associated with oblique modes of dis-

turbances which are anti-symmetric about the bisector plane have a profound effect on the

stability of the flow. As a result, in good agreement with observation, the critical streamwise

Reynolds number, associated with a spanwise location is significantly reduced as the corner

is approached, being R_ = 60 approximately for spanwise distance of z* = 6x*R -1 from the

corner compared with R_ = 322 approximately for z* = 20x*R -1 , where x* measures down-

stream distance from the leading edges. At R = 600, the growth rate of the most amplified

mode of disturbance at the former location is over six times greater than that at the latter;

the corresponding wave angle at the two locations is respectively 44 ° and 5 ° , approximately.

1Research was supported by the National Aeronautics and Space Administration under NASA Contract
No. NAS1-19480 while the author was in residence at the Institute for Computer Applications in Science

and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23681-0001.
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1. Introduction

The secondary flow which arises in the streamwise corners of a wind tunnel has important

bearing on the size of the available test section. In experiments involving laminar flow in a

two-dimensional boundary layer, for example, the role of the side walls of the tunnel in the

observed transition is not always clear. Further the spread of the secondary flow from the

junction of a wing with the fuselage of an aircraft has implications for laminar flow control

on wings.

A knowledge of the nature of the flow in a streamwise corner and its stability character-

istics is therefore of considerable practical importance. A model flow which has been studied

is that in which the corner is formed by two semi-infinite plane surfaces inclined at an angle,

usually a right angle, to each other with the free stream flow along the corner (figure 1).

The basic flow has a similarity solution which is symmetric about the bisector plane (see Ru-

bin(1966), for example) such that well away from tile corner it matches the two-dimensional

Blasius boundary layer flow along tile plane surfaces while in the corner it is governed by

fully three-dimensional equations of motion. In between these regions, Rubin(1966) identi-

fied a 'blending boundary layer' where the influence of the corner decays algebraically away

from the corner. Further, Rubin showed that to leading order tile spanwise velocity profile

in this region exhibits a reverse flow in the boundary layer.

Zamir(1981) estimated from experimental evidence that in the absence of pressure gra-

dient, transition in a right angled streamwise corner occurs at a value of the square root of

the Reynolds number, based on the streamwise distance, of R = 100 (henceforth R will be

referred to as the Reynolds number). Unlike the experimental results of E1-Gamal and Bar-

clay(1978), Zamir and Young (1979) found breakdown of similarity in the velocity profiles.

Zamir(1981) attributed this as a development of flow instability.

Lakin and Hussaini (1984) derived the equations governing small perturbations of the

basic flow in the 'blending' boundary layer identified by Rubin using a locally parallel flow

approximation. They considered heuristic solutions of these equations based on the critical

layer in the boundary layer.

In this paper, we re-consider the stability of the blending boundary layer for a right

angled streamwise corner, using a locally parallel flow approximation as done by Lakin and

Hussaini and show that the instability is dominantly driven by the outer boundary conditions

associated with disturbances which are, unlike the basic flow, anti-symmetric about the

bisector plane. The spanwise cross-flow turns out to be of too insignificant a magnitude to

account for the observed early transition ill tile flow, unlike in the case of flow past a swept

wing, for example.



In section 2, the equations of motion and the boundary conditions are given. The equa-

tions obtained are exactly those given by Lakin and Hussaini (1984) although it has not

been necessary to Inake any a priori assumptions about the nature of the disturbances. The

equation governing the normal component of the perturbed velocity satisfy a modified Orr-

Sommerfeld equation. Since the basic flow is symmetric about the bisector plane, the outer

boundary conditions need to be applied on the bisector plane rather than at 'infinity'. This

gives rise to the possibility of modes of disturbances which are symmetric or anti-synlmetric

about the bisector plane. It is found that the anti-symmetric modes are the most unstable.

The method of orthonormalization is used to determine the eigenvalues of the stability

problem and is briefly described in section 3.

The results of the investigation are presented in section 4. As expected, it is found

that the critical Reynolds number, Rcr decreases with decrease in spanwise distance from

tim corner, it being given by Rcr = 54 for a spanwise distance of z* = 6R-Ix * compared

with R = 322 for z* = 20R -_x*; the growth rate of the the most unstable disturbance at

R = 600 is over six times greater at the former location than that at the the latter while

the corresponding wave-angle is over nine times greater. Further, it is found that in the

proxinfity of the corner, the three-dimensional modes of disturbance are unstable at a lower

Reynolds number than that for two-dimensional ones.
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2. Basic Equations and boundary conditions

We define Cartesian co-ordinates (x*,y*,z*) as shown in figure I, with the two semi-

infinite rigid planes intersecting at right angle in the line Ox*. A viscous incompressible

fluid of uniform density flows along the corner with the undisturbed velocity away from the

planes given by (U*, 0, 0) where U* is a constant. The undisturbed flow is symmetric about

the bisector plane y* = z* so that it is only necessary to consider the flow in the region

between this bisector plane and the rigid plane Y* = 0, say, with appropriate boundary

conditions on the two planes. The fluid velocity satisfies the exact non-dimensional equations

(u_u_*= U*u_u_(x,y,z), t* = U*-llt, x* = Ix_,p* = p*U*2p where l denotes the downstream

distance of the location under consideration):

an d

oqu 1 2

d +'w = -Vp+ (1)

= 0, (2)



where R = (U*I/u*) x/2 is the Reynolds number. Tile boundary conditions to be satisfied are

_(x,0,z,t) = 0, u(_, o¢,_,t) = (1,0,0), (3)

together with appropriate boundary condition on the bisector plane x = z.

We consider a small perturbation about a basic steady flow, so that

u_ = u-(z_) + fi__(x,t), p = _(x) +/_(x_, t). (4)

On substituting (4) into (i) and respectively equating zeroth order and first order terms in

and/_ to zero we have
1

g.Vg + VF = R---TV2u_-

Ot + ff.V_ + _.V_ =
1 2~

-Vp + --_ x7 u_

v.g=0, v._=0

(5)

(6)

(7)

with, writing g = (U, V, W),

_(x,O,z) = O, _(x, cx), oo) = (1, O, O)

and

OU OU - b
Oy Oz' V = W on y = z (8)

_(x,O,_,t) = o, _(_,_,_) = o (9)

together with appropriate boundary conditions on fi_at y = z.

In region 6 < z << x, where 6 is the non-dimensional thickness of a Blasius boundary

layer, 6 = 4.9xl/_R-1, Rubin (1966) has shown that for a steady flow, symmetric about the

plane y = z, (5) has an approximate similarity solution,

__ Z /_-1 Z2
_=(fI(q)+O(R-'-_), _(rl),R-'(_(r/) +0(_5))) + O(R -_) (i0)

where a prime denotes differentiation with respect to the dependent variable r/ = yR/x/_

and _ = ½(rlf'- f), _= aog(q) and f and g satisfy

-4--_JJ =0; f(0)=f'(0)=0; f'(_)=l (11)

,, 1 1
g __°

+ -2(fg)'= 2' g(0) = 0;g(_o)= -1 (12)

with a0 = .86039. Here the streamwise pressure gradient is o(R -1). Thus the approximate

basic flow corresponds to a Blasius boundary layer flow with an imposed cross-flow, R-l@,



associated with tile normal component of velocity in the boundary layer on the other rigid

plane.

We consider the location z = l(x* = I), z = R-'z0 (z0 > 5), and introduce the concept

of locally parallel flow. Without loss of generality, we consider a disturbance centered on

(1,y, R-lz0) on an appropriate scale of O(R-'). We write

= I+R-'_,, y = R-',_,+O(R-_),_ = n-'(zo+_,),_ = R-'t, (13)

' _ d V = RV1 etc. Thus locally, in the vicinity ofand note that r/ = r/, + O(R-1), -- d_'tl '

(1, v, R-' z0),

__=(f'(,I,),R-'v(q,),R-'_(q_)) + O(R-2). (14)

if we write u__"= (u, v, w), then on substituting (14) and (15) into (6) and (7), we obtain after

some manipulation,

where _"-- o_,
0zi

1 , 2 f,,, O 1_,, 0.
[(£ + -_V)V, - Ox_ _w _zl]V = 0, (15)

Ou Ov Ow

Ox----_+_ + Oz, - O, (16)

f,, Ov 1 , Ov
£'( + Oz, -_w Ox, - 0 (17)

0_ is the normal component of perturbed vorticity and
0xl

£ _ 0 1 2
0t, + _.v, - _v_. (18)

Equations (15)-(17) have a solution of the form

[1)(X,y,Z;t),_(x,y,z;t)] = [Ul(l]l),_l(7]l)]e i(axl+flzl-actl) (_9)

where v, and {, satisfy the de-coupled equations:

_ tt X1

, /3 ac))(D 2 _ A2) + iR(c_f'"+ _w )jVl = 0 (20)[(D 2 - A2) 2 - (_D + V + iR(a'f' + _w -

[iR(af'+ -_flW-ac)+VD-(D2-A2)]C1+iR([3f" - _W')Jv,=O. (21)

ttere D =_ d/dzl and )_2 = a2+/)2. Equation (20) corresponds to the Orr-Sommerfeld

equation for a basic flow /[-7= _ + fl-fiRN; it is usua] to drop the terms involving gandg', but

these are retained here consistent with retaining R-i_ in the basic flow. Retaining these

terms makes minor changes in the stability characteristics. Equation (20) is the same as

given by Lakin and Hussaini (1984) although in deriving it, it has not been necessary to

make any a priori assumption about the nature of the disturbance.



Boundary co,_ditions

Tile approximate basic flow in (20) is independent of tile spanwise location z and it is

tempting to obtain (as is usually done in the case of the Orr-Sommerfeld problem associated

with the Blasius boundary layer) tile outer boundary conditions from (9) and from tile

limiting form as rh -+ eo of (20)and apply these at a large value of rh; the limiting form of the

fourth order equation (20) has two exponentially growing solutions and two exponentially

decaying solutions, one solution in each category being viscous and the other inviscid in

character. Care, however, is required in tile present case since the basic flow is regarded

as being symmetric about the bisector plane y = z so that the outer boundary condition

must strictly be applied at this plane, instead of at some large value of ,]1 as the restriction

4.9 < z0 << R imply that the normal to the plane y = 0 at the spanwise location z = R-lza

meets the bisector plane at _l - r],o_,t = zo , where 4.9 < rho_t << R. It is through this

requirement that the dependence of the stability characteristics on tile spanwise location

enters into the problem.

Although the basic flow is symmetric about the plane y = z, no such restriction applies

to the perturbations. Accordingly, the perturbation velocity _ = (u, v, w) may satisfy one

of four possible basic sets of boundary conditions on y = z: (i)0-_°_ _- 5-7-,0_v = w,(ii) o_a__-

o,, (iii) u v u -w.0_' v = -w, = 0, = w, (iv) = 0, v = Conditions (i) and (ii) imply that u is

symmetric while v - w is respectively anti-symmetric and symmetric in y = z. Conditions

(iii) and (iv) imply that u is anti-symmetric while v - w is respectively anti-symmetric and

symmetric in y = z. It is found that the most unstable mode of disturbance corresponds

to condition (iii). We therefore consider only this case in detail here; the other cases may

be considered similarly without any difficulty. In view of the continuity equation, it follows

from condition (iii) that we must have

(D+i/3)v = 0onr h =z0 (22)

Next, we note that in spite of tile restriction on its range, rllo,,t still lies outside the boundary

layer so that we may consider the limiting form of (20) as rh _ z0 >> 1 in determining the

second outer boundary condition. Hence,

(D 2_._2)(D_X)v = 0onT]l =z0>>l (23)

where X = ½(g(ec)- (g2(_) +4( A2+ iR(c_+/3_(cc)/R)))_/2). The choice (23) means that of

the four solutions to the limiting form of (20) described above, we only discard the viscous

exponentially growing solution, the growth rate of this solution being much greater than the

5



correspondinginviscid solution. The conditions at the surfacerh = 0 are

v,(O) = Dvl(O) = 0 (24)

3. Numerical method

The linear equation (20) together with the boundary conditions (22)-(24) is solved using

the technique of orthonormalization (see for example, Davey (1973)) which allows the use

of standard shooting methods. We first express (20) as a system of first order ordinary

differential equations:

where

4

¢i _aijej, (i 1 ...4) (2,5)
j=l

! !

¢, = vl, ¢2 = ¢1, ¢3 = ¢_ - ,_2¢_
?

¢4 = ¢_, (26)

and the non-zero elements of the matrix aid are:

a12 = a23 _ a34 = 1_ a21 _ ,_2

a4, = -iR(c_f'" + flw"/R)

,_2 fl_/ R - o,c)a43 = + iR(_ f' + + _',

The boundary conditions (22)-(24) take the form:

a44 = g. (27)

¢2(z0) + ifl¢,(Zo) = 0

¢.(z0)- xCa(z0)= 0

¢1(0)= 4_(0)= 0 (28)

Equations (25) are to be integrated from r/a = z0 for various values of Zo to rh = 0. The

steady flow, characterized by f', _ and _, is evaluated at 2M points by integrating (14)-(17)

using fourth order Runge-Kutta integration.

Corresponding to the two outer boundary conditions given in (28), two independent

solutions satisfying these conditions and the four equations (25) can be chosen. We denote

these by vectors ¢(J), (j = i, 2) where

¢¢J)= [¢Ij),eli),gj), ¢I_)]_

6



with starting valuesat 7/1= z0 given by:

¢0) = [1, -i/3, 0, 0] T

= [0,0, l, x] (29)

With these initial values the system (25) is integrated using M-point fourth-order Runge-

Kutta integration. The general solution is a linear combination of these two solutions:

__= b,¢(')+ b2¢_O) (30)

where bi are chosen to satisfy tile two remaining boundary conditions at z = 0. Since

the boundary conditions at z = 0 are homogeneous, this requires that the determinant of a

certain 2 x 2 matrix, whose elements are the appropriate elements of the vectors __¢(J)(j = 1,2),

vanish.

However, since the eigenvalue problem is stiff, rounding errors cause the base solutions

¢(J) to lose their linear independence fairly quickly during the integration. To circumvent

this difficulty, the base vectors are orthonormalized every ten integration steps, say (a total

of (2M/10) - 1 orthonormalizations since no orthonormalization is performed at the final

integration step). Thus, every ten integration steps, ¢0) is replaced by ¢(J) where

_d')/l_d'>l

(31)

with I[]l in the denominator denoting the modulus of the bracketed numerator. In satisfying

the boundary conditions a,t r/1 = 0, the determinant of the corresponding 2 x 2 matrix, whose

elements are now the appropriate elements of _¢(J), (j = 1,2) is required to vanish. If the

eigenfunctions are needed, it is necessary to keep an account of all the orthnormalizations.

However, to determine the eigenvalues it is only necessary to solve iteratively the non-linear

equation,

f(o_,fl, R,c) --= 0 (32)

corresponding to the vanishing determinant at r/l = 0. This is done here using Muller's

method.

4. Results

We have restricted consideration to solutions corresponding to the most unstable dis-

turbances. The neutral curves, which represent the projections onto the ee - R plane of

the contours of the neutral surface, given by t3 = constant, corresponding to three values



of the spanwise stations z0 (a* = IR-'Zo with x* = 1) are shown in figure 2(a)- (c). Con-

tours are plotted for values of/_ in the range 0 _< /3 < /3cT, where /5'cT is that value of /3

which corresponds to the critical ReynOlds number, Rcr. As is expected, proximity to tile

corner has a destabilizing effect, ill tile cases shown, instability to three-dimensional distur-

bances in the above range of spanwise wavenumber occurs at a lower Reynolds number than

it does for a two-dimensional disturbance, this feature being more pronounced at stations

closer to the corner than those away from it. Proximity to the corner also has a destabi-

lizing effect on the two-dimensional mode of disturbance (_ = 0). It may be noted that at

z0 = 6, terms neglected in the basic flow in (14) may become important and inclusion of

these terms will modify the stability characteristics at. this location. However, we expect

that the characteristics depicted in figure '2(c) will still be approximately correct. For values

of z0 < 6 approximately, we expect that it will be necessary to consider the exact, fully

three-dimensional basic flow.

It is interesting that tile instability is driven by the outer boundary conditions, the most

unstable disturbance having a finite value of ft. This is consistent with Dhanak (1981) where

it was shown that spanwise waviness in one of the walls of a channel has a destabilizing effect

on the plane Poiseuille flow through the channel. The effect is much more pronounced in

the present case in view of the presence of the other wall.

The neutral curves for fl =/3¢r associated with four spanwise stations axe shown in figure

3 for comparison. The neutral curve for a Blasius boundary layer (/_¢_ = 0) is also included

in the figure. (Note, however, that in this case, contrary to normal practice, the O(R -I)

normal component of the basic flow is retained in the associated Orr-Sommerfeld equation,

consistent with (20); this has the effect of shiftilig the neutral curve for this case slightly

towards higher Reynolds number.) The critical Reynolds number decreases and the range of

the unstable streamwise and spanwise wavenumbers increases as the corner is al)proached.

The values of the critical parameters are given in Table 1. The values of the critical Reynolds

number of 60 for z0 = 6 and 110 for z0 = 7.5 are consistent with the experimental prediction

of transitional Reynolds number of R = 100 by Zamir (1981). The value of :3¢r increases

while c_ decreases, so that the critical wave-angle ec,. = tan-_([J_/c_) increases, as the

corner is approached;e¢_ = 48 ° for z0 = 6 compared with e_ = 5 ° for z0 = 20. As can be

seen from figure 3, the neutral curves for finite values of z0 approach the neutral curve for

the Blasius boundary layer as z0 becomes large.

It is expected that the most unstable mode of disturbance will dominate the initial

development of the instability. The growth rate of the most unstable disturbance is plotted

as a function of the Reynolds number for each spanwise station z0 in figure 4. At z0 = 6 the

growth rate increases from ac, = 0 at R = 54 to ceci = 11.3 × 10 -3 at R = 600. At R = 600

g
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the growth rate of the disturbance is over six times greater at Zo = 6 than it is at z0 = 20.

Tile variation of tile wave-angle e = tan-l(_5'/a) corresponding to the most unstable

mode of disturbance with Reynolds number is shown in figure 5. Tile value of this wave-

angle increases as tile corner is approached; at /_ = 600, e = 44 ° for Zo = 6 compared with

• = 5 ° at zo = 20. e decreases at first as R is decreased from its value of 600, but then

increases somewhat as the critical Reynolds number is approached, the final increase being

most significant for the case z0 = 6; • = 48 ° at tile critical Reynolds number for zo = 6.

5. Conclusions

It is shown that tile instability of the flow ill the vicinity of a streamwise right angled

corner is dominantly driven by oblique disturbances which are anti-symmetric in the bisector

plane. The magnitude of the cross flow is found to be too small to be a significant factor

in the observed early transition of this flow. It is found that close to the corner, three-

dimensional disturbances in a particular range of spanwise wavenumbers are unstable at a

lower Reynolds number than two-dimensional disturbances. Close to tile corner, the critical

Reynolds number has a value of around R "-- 50 compared with R _, 300 for tile Blasius

boundary layer far away from the corner. This is consistent with the experimental prediction

(Zamir, 1981) of transitional Reynolds number of R = 100 for this flow. At R = 600

the growth rate of the most unstable disturbance is over six times greater at a distance

z* = 6R-ix * than it is at z* = 20R-1:c * while the corresponding wave-angle is over nine

times greater.
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ZO

6

7.5

i0

2O

O0

_cr O[cr #cr ( OgCr )cr

53.95

ii5.27

210.90

321.91

324.43

0.1223

0.1283

0.1449

0.1736

0.1741

0.1360

0.1015

0.0806

0.0141

O.

0.0616 48.0

0.0553 38.3

0.0590 29.1

0.0684 4.6

0.0685 O.

Table 1: Critical values of the stability parameters. The values in the last row are for a

Blasius boundary layer and are evaluated using the corresponding Orr-Sommerfeld equation

in which terms propotional to G v' are retained.
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Figure 1. Schematics of comer flow geometry
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in the et-R plane, at spanwise locations (a) z0 = 20, (b) zo = 10, (c) zo = 6 . Contours
are shown forfl in the range 0 g fl < tic, where fl,r is the value offl corresponding to the
critical Reynolds number. Here sp,'mwise dist,'mce z" -- x'R-_zo..
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location zoThe associated critical value of.6 is shown on each curve and the neutral curve
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0.01

0.008 zo=6, fl=0.136

0.006

Zo = 7.5, fl = 0.1015
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= 20, j8 = O. 0141

0 = i

0 I O0 200 300 400 500 R 600

Figure 4. Growth-rate of most unstable disturbance for various spanwise locations z 0 as a
function of Reynolds number R. The fixed v,'due offl corresponding to maximum growth
rate in each case is shown on the associated curve.
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0
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100 200 300 400 500 R

J
600

Figure 5. Wave-angle for the most unsutble disturbance as a function of the Reynolds
number at v,'u-ious sp,'mwise locationszo. The corresponding wave-angle is zero for a
Blasius boundary layer flow.
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